azolin-5-one (Sabelli \& Zanazzi, 1969a) and by 2.45° for 3-phenylisoxazolin-5-one (Cannas, Biagini \& Marongiu, 1969). The intermolecular distances less than $3.8 \AA$ are listed in Table 6 and shown in Figs. 6 and 7. The shortest intermolecular distances are as follows:
$\mathrm{C}\left(14^{\mathrm{i}}\right) \cdots \mathrm{O}\left(2^{\mathrm{ili}}\right), 3 \cdot 350 ; \mathrm{C}\left(4^{\mathrm{i}}\right) \cdots \mathrm{O}\left(2^{\mathrm{vi}}\right), 3 \cdot 355$;
$\mathrm{C}\left(6^{\mathrm{i}}\right) \cdots \mathrm{N}\left(2^{\mathrm{ii}}\right), 3 \cdot 405 ; \mathrm{O}\left(1^{\mathrm{i}}\right) \cdots \mathrm{O}\left(2^{\mathrm{iiI}}\right), 3 \cdot 423$;
$\mathrm{C}\left(12^{1}\right) \cdots \mathrm{O}\left(2^{\mathrm{ix}}\right), 3 \cdot 452 \AA$.

Computation

The main part of the calculations was performed on an IBM 7040 computer with the use of the program $E R B R 1$ (Van den Hende, 1961) for structure factor and least-squares refinement and the program $E R F R$ 2 (Sly, Shoemaker \& Van den Hende, 1962) for Fourier summation. The final block-diagonal least-squares refinements were carried out with the program $H B L S$ (Ashida, 1964). Thermal ellipsoids were drawn by the CDC 3600 computer at C. Itoh Electronic Computing Service Co. Ltd. using the program ORTEP (Johnson, 1965).

The authors are grateful to Drs N. Yoda and M. Kurihara for kindly supplying the specimen and for valuable discussions. Thanks are also due to Mr M. Tanimura for his assistance at the early stage of the X-ray analysis and for valuable discussions.

References

Ashida, T. (1964). HBLS, Block-Diagonal Matrix LeastSquares Refinement Program.
Cannas, M., Biagini, S. \& Marongiu, G., (1969). Acta Cryst. B25, 1050.

Hunt, D. J. \& Subramanian, E. (1969). Acta Cryst. B25, 2144.

Iball, J. \& Motherwell, W. D. S., (1969). Acta Cryst. B25, 882.
International Tables for X-ray Crystallography (1962). Vol. III, Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. Oak Ridge National Laboratory, Tennessee.
Konnert, J., Karle, I. L. \& Karle, J. (1970). Acta Cryst. B26, 770.
Kurihara, M. \& Yoda, N. (1965). Tetrahedron Letters, 30, 2597.
Kurihara, M. \& Yoda, N. (1966). Bull. Chem. Soc. Japan, 39, 1942.
Rohrev, D. C. \& Sundaralingam, M. (1970). Acta Cryst. B26, 546.
Sabelli, C. \& Zanazzi, P. F. (1969a). Acta Cryst. B25, 182.
Sabelli, C. \& Zanazzi, P. F. (1969b). Acta Cryst. B25, 192.
Sly, W. G., Shoemaker, D. P. \& Van den Hende, J. H. (1962). ERFR 2 Two- and Three-Dimensional Crystallographic Fourier Summation Program. Massachusetts Institute of Technology \& Esso Research and Engineering Company.
Soest. T. C. van \& Peerdeman, A. F. (1970). Acta Cryst. B26, 1956.
Tohyama, S., Kurihara, M., Ikeda, K. \& Yoda, N. (1967). J. Polymer Sci A-1,5, 2523.

Trus, B. L. \& Fritchie, C. T. JR (1969). Acta Cryst. B25, 1911.

Van den Hende, J. H. (1961). ERBR 1 Crystallographic Structure Factor and Least-squares Refinement Program. Esso Research and Engineering Company.
Yoda, N. (1968). Abstr. of Papers, Amer. Chem. Soc. 4th Biennial Polymer Symposium p. 7 (Amherst, Mass.)
Yoda, N. (1969). Encyclopedia of polymer Sci. and Tech. Edited by H. Mark, Vol. 10, pp. 682-690, New York: John Wiley.

The Crystal Structure of $\mathrm{Cs}_{2} \mathrm{MnBr}_{4}$

By J.Goodyear, G.A.Steigmann and D.J.Kennedy
Physics Department, The University of Hull, England

(Received 16 August 1971)
The crystal structure of $\mathrm{Cs}_{2} \mathrm{MnBr}_{4}$, determined from Weissenberg data, is orthorhombic with $a=$ $10 \cdot 150$ (23), $b=7 \cdot 806$ (11) and $c=13 \cdot 70$ (8) \AA. The space group is Pnma and $Z=4$. The structure is isomorphous with that of $\mathrm{Cs}_{2} \mathrm{ZnBr}_{4}$.

Introduction

The material examined in this work was prepared by heating a mixture, consisting of stoichiometric amounts of CsBr and MnBr_{2}, in a sealed evacuated silica tube until molten at about $650^{\circ} \mathrm{C}$. The specimen was then cooled slowly ($10^{\circ} \mathrm{C}$ per hour) to room temperature and
single crystals suitable for X-ray study were selected from the yellow crystalline mass. Because the material was very unstable in the presence of water vapour, each crystal was sealed in a Lindemann glass tube containing $\mathrm{P}_{2} \mathrm{O}_{5}$.

The space lattice and unit-cell dimensions were determined from rotation and Weissenberg photo-
graphs taken with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 5418 \AA$). The unit cell was found to be very similar in size to those determined for $\mathrm{Cs}_{2} \mathrm{ZnBr}_{4}$ and $\mathrm{Cs}_{2} \mathrm{CuBr}_{4}$ by Morosin \& Lingafelter $(1959,1960)$ as seen in Table 1.

Table 1. Unit-cell data

	a	b	c
$\mathrm{Cs}_{2} \mathrm{MnBr}_{4}$	$10 \cdot 150(23) \AA$	$7 \cdot 806(11) \AA$	$13 \cdot 70(8) \AA$
$\mathrm{Cs}_{2} \mathrm{ZnBr}_{4}$	$10 \cdot 196(18)$	$7.770(6)$	$13 \cdot 517(23)$
$\mathrm{Cs}_{2} \mathrm{CuBr}_{4}$	$10 \cdot 195(12)$	$7.965(5)$	$13.936(15)$

Since the conditions for the observed reflexions were the same as those noted by Morosin \& Lingafelter in their structure analyses of the zincate and the cuprate, it was assumed at the outset that the manganate was isomorphous with the latter and this indeed proved to be the case.

Structure analysis

The macroscopic density was determined by weighing a sample of the material in air and in toluene. Good agreement between the observed and calculated densities was obtained by assigning four molecules of $\mathrm{Cs}_{2} \mathrm{MnBr}_{4}$ per unit cell.

Intensity data were collected from c-axis equiinclination Weissenberg multiple-film photographs taken with Mo $K \alpha$ radiation. The systematically absent reflexions were consistent with space groups Pnma and $P n 2_{1} a$; the centrosymmetrical space group Pnma (No. 62) was chosen since the structures of $\mathrm{Cs}_{2} \mathrm{ZnBr}_{4}$ and $\mathrm{Cs}_{2} \mathrm{CuBr}_{4}$ were based on this. The intensities of 380 reflexions on layer lines 0 to 7 were measured using a Joyce-Loebl flying spot microdensitometer, visual estimates being made for very weak spots; about 126 reflexions were too weak to be recorded. These data were corrected for the Lorentz-polarization factor and for absorption by applying the correction factors given by Bond (1959) for a cylindrical crystal. The appropriate crystal data are presented in Table 2.

Table 2. Crystal data

Formula: $\mathrm{Cs}_{2} \mathrm{MnBr}_{4}$, F.W. $640 \cdot 42$
$D_{0}=3.81 \mathrm{~g} . \mathrm{cm}^{-3}, \quad D_{x}=3.92 \mathrm{~g} . \mathrm{cm}^{-3}, Z=4$
Mean $r=0.005 \mathrm{~cm}$
$\mu=235 \mathrm{~cm}^{-1}(\lambda=0.7107 \AA)$
The structure determination began with a threedimensional least-squares refinement using individual isotropic temperature factors and assuming initial atomic parameters similar to those of the zincate and the cuprate. Atomic scattering factors for $\mathrm{Cs}^{+}, \mathrm{Mn}^{2+}$ and Br^{-}were taken from International Tables for X-ray Crystallography (1962) and inter-layer scaling was achieved by scaling the observed to the calculated structure factors. After 10 cycles of refinement the reliability index $\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$ reduced to 10.8%, at which stage the shifts in the positional parameters
were all less than one tenth of the standard deviations and those in the thermal parameters less than one thirtieth. An electron density projection along \mathbf{b} was finally calculated and, as this did not reveal any spurious peaks, the structure was considered to be correct. Final atomic parameters are given in Table 3; observed and calculated structure factors are compared in Table 4.

Table 3. Final atomic parameters

Origin at I. Standard deviations are given in parentheses.

Equip		x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{Cs}(1)$	4(c)	$0 \cdot 1315$ (11)	$\frac{1}{4}$	0.0975 (10)	$3 \cdot 89$ (22)
Cs(2)	4(c)	-0.0200 (8)	$\frac{1}{4}$	$0 \cdot 6749$ (9)	$2 \cdot 55$ (17)
Mn	4(c)	$0 \cdot 2291$ (18)	1	$0 \cdot 4239$ (19)	1.51 (38)
$\operatorname{Br}(1)$	4(c)	-0.0121 (18)	+	$0 \cdot 4061$ (19)	$4 \cdot 15$ (39)
$\mathrm{Br}(2)$	4(c)	$0 \cdot 3156$ (18)	$\frac{1}{4}$	$0 \cdot 5907$ (19)	$4 \cdot 37$ (42)
$\operatorname{Br}(3)$	$8(d)$	$0 \cdot 3222$ (11)	$0 \cdot 5024$ (16)	$0 \cdot 3440$ (13)	$4 \cdot 25$ (29)

Table 4. Observed and calculated structure factors

Discussion

The structure consists of Cs^{+}and MnBr_{4}^{2-} ions, each $\mathrm{Cs}(1)$ having eleven nearest Br neighbours and each $\mathrm{Cs}(2)$ nine. The atomic parameters are so similar to those given by Morosin \& Lingafelter for $\mathrm{Cs}_{2} \mathrm{ZnBr}_{4}$, that any discussion can be confined to a comparison between the two sets of structural data.
Bond lengths and angles are given in Table 5. The average $\mathrm{Cs}(1)-\mathrm{Br}$ and $\mathrm{Cs}(2)-\mathrm{Br}$ distances (4.04 and $3.73 \AA$, respectively) agree, within one standard devia-

Table 5. Bond lengths and angles
Standard deviations are given in parentheses.

$\mathrm{Mn}-\mathrm{Br}$ tetrahedron					
$\mathrm{Mn}^{\text {i }}$	$\operatorname{Br}\left(1^{\text {i }}\right.$)	2.460 (27) \AA	$\operatorname{Br}\left(1^{1}\right)-\mathrm{Mn}{ }^{1}-\mathrm{Br}\left(2^{1}\right)$		$116.7(1.0)^{\circ}$
	$\operatorname{Br}\left(2^{\text {i }}\right.$)	$2 \cdot 448$ (36)	$\operatorname{Br}\left(1^{1}\right)$ -	$\mathrm{n}^{\mathrm{i}}-\mathrm{Br}\left(3^{\text {i, }}\right.$, iij$)$	$109 \cdot 9$ (9)
	$\operatorname{Br}\left(3^{\text {i }}\right.$, iii $)$	$2 \cdot 444$ (19)	$\operatorname{Br}\left(2^{1}\right)-$	$\mathrm{n}^{\mathrm{i}}-\mathrm{Br}\left(3^{\text {i }}\right.$, 11 i$)$	$106 \cdot 2$ (9)
$\operatorname{Br}\left(1^{\text {i }}\right.$)	$\operatorname{Br}\left(2^{\text {i }}\right.$)	$4 \cdot 178$ (30)	$\operatorname{Br}\left(3^{\text {i }}\right.$) $-\mathrm{Mn}^{\mathrm{i}}-\mathrm{Br}\left(3^{\text {iii }}\right)$		$107 \cdot 5$ (8)
	$\operatorname{Br}\left(3^{\text {i }}\right.$, iii) $)$	4.015 (20)			
$\operatorname{Br}\left(2^{\text {i }}\right.$)	$\operatorname{Br}\left(3^{\text {i, } \mathrm{iii}^{\text {i }} \text {) }}\right.$	3.913 (28)			
$\operatorname{Br}\left(3^{1}\right)$	$\operatorname{Br}\left(3^{\text {iii }}\right.$)	$3 \cdot 940$ (18)			
$\mathrm{Cs}(1)-\mathrm{Br}$ distances			$\mathrm{Cs}(2)-\mathrm{Br}$ distances		
$\mathrm{Cs}\left(1^{\text {ii }}\right)$	$\operatorname{Br}\left(1^{\text {1i }}\right.$)	$4 \cdot 472$ (29) \AA A	$\mathrm{Cs}\left(2^{\mathrm{x}}\right)$	$\operatorname{Br}\left(1^{\mathrm{v}, \mathrm{vii}}\right)$	4.070 (8) \AA A
	$\operatorname{Br}\left({ }^{\text {ix }}\right.$)	$3 \cdot 618$ (21)		$\operatorname{Br}\left(1^{\text {x }}\right.$)	$3 \cdot 685$ (29)
	$\operatorname{Br}\left(2^{1}\right)$	$4 \cdot 113$ (25)		$\operatorname{Br}\left(2^{1}\right)$	$3 \cdot 619$ (27)
	$\operatorname{Br}\left(2^{\text {vi, viii }}\right.$)	$3 \cdot 941$ (3)		$\operatorname{Br}\left(2^{\text {x }}\right.$)	$3 \cdot 596$ (21)
	$\operatorname{Br}\left(3^{\text {i, iii }}\right.$)	3.792 (15)		$\mathrm{Br}\left(3^{\mathrm{v}, \mathrm{vii}}\right)$	$3 \cdot 635$ (13)
		$4 \cdot 363$ (20)		$\operatorname{Br}\left(3{ }^{\text {vi, viii }}\right)$	$3 \cdot 624$ (17)

tion, with those observed for the zincate. The latter distance almost equals the sum of the ionic radii ($3 \cdot 63 \AA$) given by Clark (1955). The angular distortion of the tetrahedral unit, which occurs in the two structures, has been adequately explained by Morosin \& Lingafelter.

Finally, it is interesting to note that Pauling's second rule is not quite obeyed in this structure; the sum of the bond strengths to $\operatorname{Br}(1), \operatorname{Br}(2)$ and $\operatorname{Br}(3)$ are 201/198, 197/198 and 197/198, respectively.

We thank Drs C. H. Morgan and H. H. Sutherland for permitting us to use their program written for the University's ICL 1905E computer. One of us (DJK) is
indebted to the Science Research Council for a maintenance award. Finally we thank the Science Research Council for a grant to purchase a flying spot microdensitometer.

References

Bond, W. L. (1959). Acta Cryst. 12, 375.
Clark, G. L. (1955). Applied X-rays, 4th ed. New York: McGraw-Hill.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Morosin, B. \& Lingafelter, E. C. (1959). Acta Cryst. 12, 744.

Morosin, B. \& Lingafelter, E. C. (1960). Acta Cryst. 13, 807.

The Crystal and Molecular Structure of Dodecachloropentasilane Silicon Tetrachloride

By David K. Fleming
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 4 August 1971)
The structure of dodecachloropentasilane silicon tetrachloride, $\mathrm{Si}_{5} \mathrm{Cl}_{12} . \mathrm{SiCl}_{4}$, has been determined and refined by three-dimensional least-squares methods, using 67 reflexions, to an R index of 0.044 . The substance crystallizes in the cubic space group $F \overline{4} 3 c$, with $a=17 \cdot 344 \AA$. The two types of molecule, $\mathrm{Si}_{5} \mathrm{Cl}_{12}$ and SiCl_{4}, are simply stacked together with intermolecular distances corresponding to van der Waals type interactions.

Introduction

The perchloropolysilanes, $\mathrm{Si}_{n} \mathrm{Cl}_{2 n+2}$, could be described as the chlorosilicon analogues of the alkanes, $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$. But whereas $\mathrm{C}-\mathrm{C}$ linkages are very common, $\mathrm{Si}-\mathrm{Si}$ linkages are somewhat rare, Si-O bonds being much preferred when possible.

Some of the higher perchloropolysilanes form 1:1 adducts with silicon tetrachloride (Urry, 1964) which are crystalline and suitable for study by X-ray methods. For example, dodecachloropentasilane silicon tetrachloride was prepared. It was of interest to see which isomer of the dodecachloropentasilane was formed: n-pentyl, isopentyl or neopentyl:

